Stability of Complex Hyperbolic Space under Curvature-normalized Ricci Flow
نویسنده
چکیده
Using the maximal regularity theory for quasilinear parabolic systems, we prove two stability results of complex hyperbolic space under the curvature-normalized Ricci flow in complex dimensions two and higher. The first result is on a closed manifold. The second result is on a complete noncompact manifold. To prove both results, we fully analyze the structure of the Lichnerowicz Laplacian on complex hyperbolic space. To prove the second result, we also define suitably weighted little Hölder spaces on a complete noncompact manifold and establish their interpolation properties.
منابع مشابه
Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملAsymptotic Stability of the Cross Curvature Flow at a Hyperbolic Metric
We show that there exists a suitable neighborhood of a constant curvature hyperbolic metric such that, for all initial data in this neighborhood, the corresponding solution to a normalized cross curvature flow exists for all time and converges to a hyperbolic metric. We show that the same technique proves an analogous result for Ricci flow. Additionally, we show short time existence and uniquen...
متن کاملPseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملRICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملOn Stability and the Convergence of the Kähler-ricci Flow
The normalized Kähler-Ricci flow exists for all times, and converges when the first Chern class is negative or zero [4, 35]. However, when the first Chern class is positive, there are very few known cases of convergence. In one complex dimension, Hamilton [19] used entropy estimates to show convergence under the assumption of an initial metric of everywhere positive scalar curvature. This last ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012